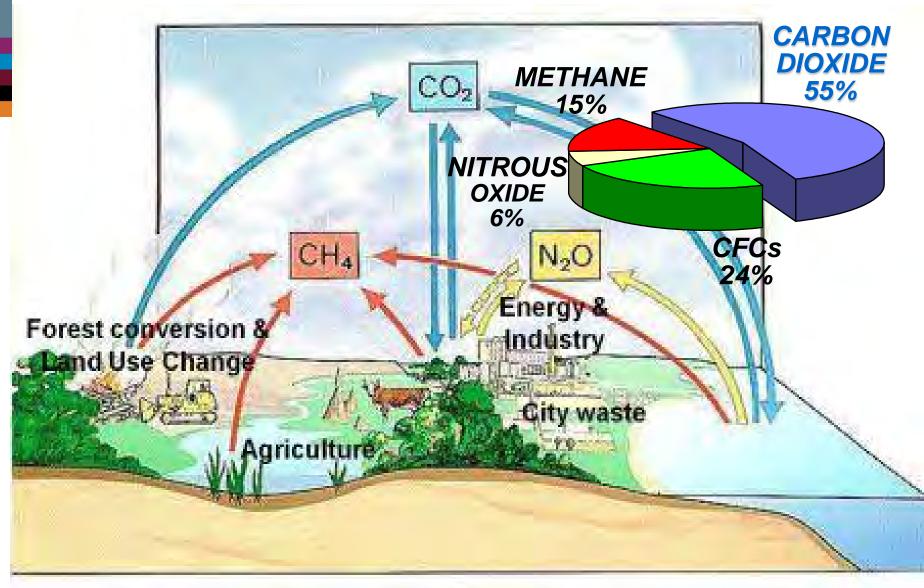
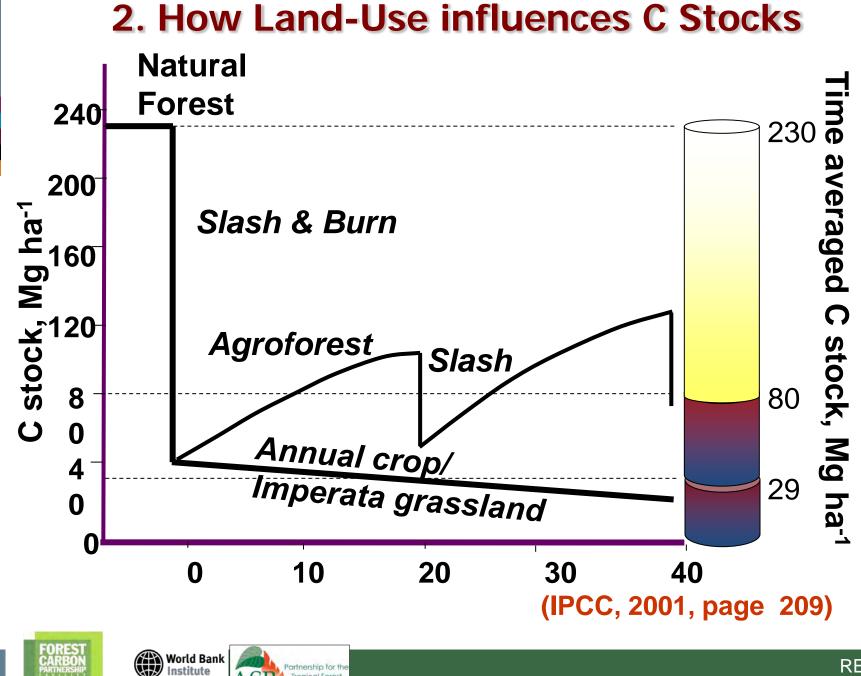
<mark>garbon Neasurement</mark>

Gerald Kapp Fahmuddin Agus, Kurniatun Hairiah, Sandra Verlarde, Meine van Noordwijk

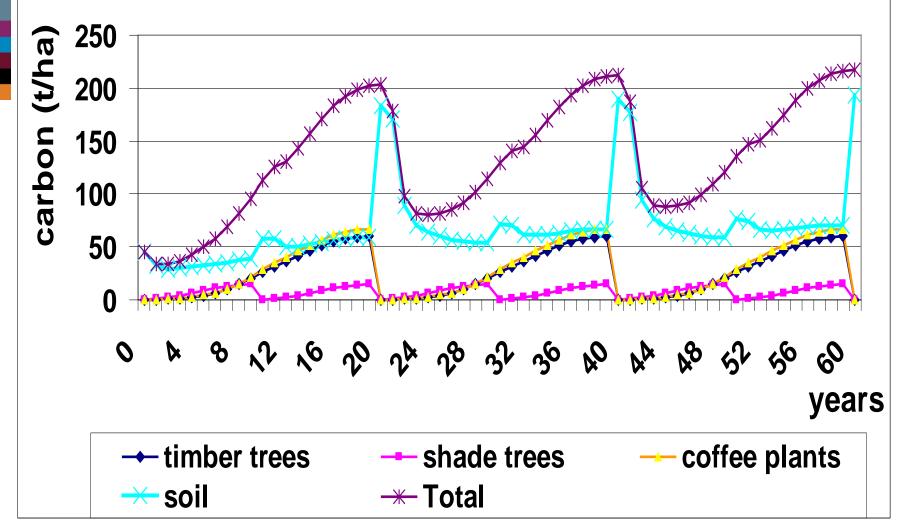
geraldkapp@worldbank.org

Why should we measure C and how?


- 1. What is the role of carbon in climate change?
- 2. How land use influences C stocks?
- 3. What is the relation to emission reductions i.e. "carbon credits"?
- 4. Where does this fit into the Opp. Costs of REDD+?
- 5. What are techniques to measure carbon?



1. Contribution of different Greenhouse Gases to Global Warming – the role of C



Marains

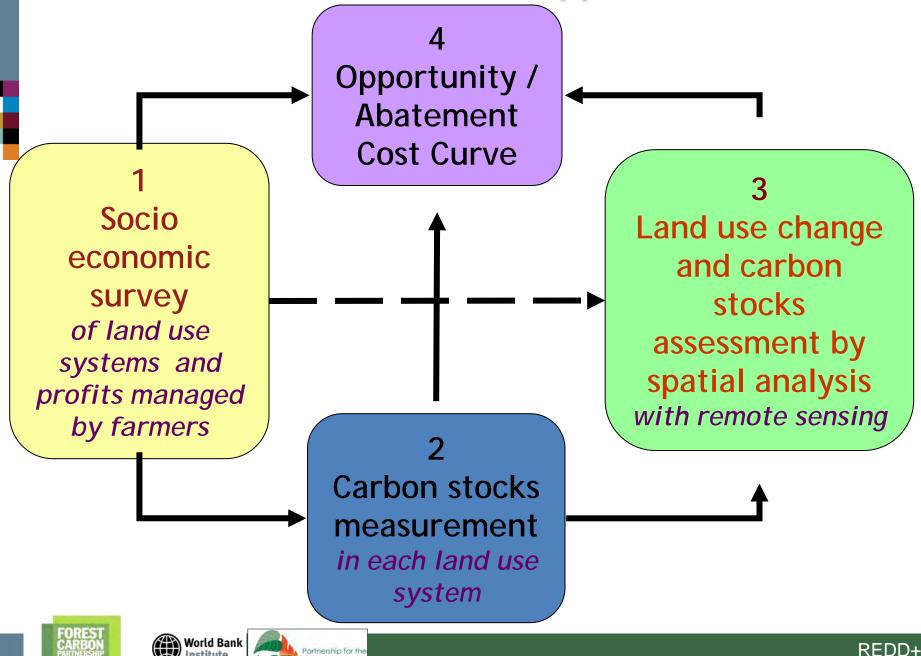
Carbon Stock Distribution inside a LUS

CO2Fix Model (2005)

3. What is the relation to emission reductions "carbon credits"?

REDD+

Carbon accounting = ATM


Actual Carbon Stock minus Reference Scenario Carbon Stock

4. Where does this fit into the Opp. Costs of REDD+?

How can we measure carbon in different land use systems?

- 2. Measure the C stock densities of the land use systems
- 3. Measure the changes in area fraction
- 4. Integrating the data to a landscape level C balance

Priority and Costs of Measuring Carbon in different Types of Land Uses and Pools

	Method	Land use					
C pool		Forest		Perennial		Annual Crop	
		Cost	Priority	Cost	Priority	Cost	Priority
Tree biomass	DBH and allometric equations	2	4	2	4		
Understorey biomass	Destructive samples	4	2	4	1		

Note: The highest values (shaded green) indicate greater priority or higher cost. Example from Indonesia.

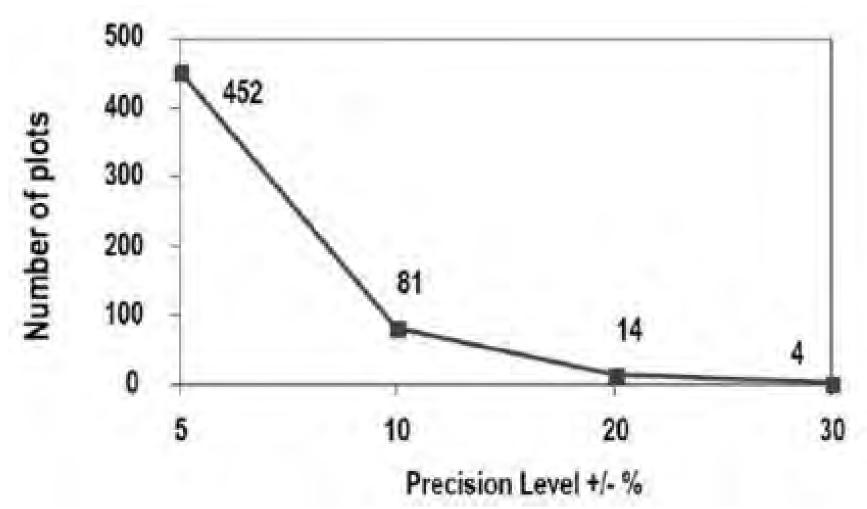
Priority and Costs of Measuring Carbon in different Types of Pools and Land Uses

1.5		Land use						
C pool	Method	Forest		Perennial		Annual Crop		
		Cost	Priority	Cost	Priority	Cost	Priority	
Tree biomass	DBH and allometric equations	2	4	2	4			
Understorey biomass	Destructive samples	4	2	4	1			
Crop	Literature, secondary data			2		2	3	
Dead biomass	Non destructive	2	2	2	1			
Litter	Destructive	3	2	2	1			
Soil C	Destructive: density and C content	4	3	4	3	4	3	

Note: The highest values (shuded green) indicate greater priority or higher cost. Example from Indonesia.

Data Requirements according to the IPCC Good Practice Guidance

- Representative: Capable of representing landuse systems/land cover categories to their proportions
- Time consistent: Capable of representing landuse systems/land cover categories consistently over time
- Complete: All lands within a country should be included, so that trade-offs are visible
- Transparent: Data sources, definitions, methodologies and assumptions clearly described


Decide on precision levels

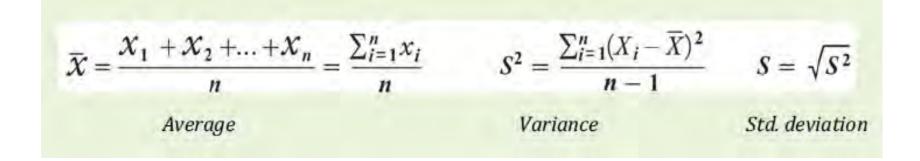
- *Tier 1:* Global scale data
 - remote sensing imagery
 - global / regional equations & parameters
- Tier 2: National scale data
 - forest inventory data, usually focused on timber volumes of commercially-attractive timber species
 - primary data that can be converted to total biomass estimates
- Tier 3: Plot/watershed data
 - bio-economic models of biomass production under different management regimes, calibrated on plotlevel biomass data (main crops and timber species)
 - ecological data of long-term forest plots

Cost-benefit implications of a higher precision level

*Source: IPCC 2003, chapter 4-3

Determine Number of Plots

- 1. Identify the desired precision level, e.g. =/- 10% of the mean value
- 2. Identify area where to collect preliminary data for each stratum. About 6-10 plots, plot size determined adequately
- 3. Estimate carbon stock average and standard deviation from preliminary data
- 4. Calculate the required number of plots


Reference: Pearson, Walker, Brown 2005: Sourcebook for Land Use, Land-Use Change and Forestry Projects. BioCF, Winrock International

Εqι

Equation Elements

t : Sample statistic from the probability t-distribution for a chosen confidence level, e.g. 95%. Initially, for an unknown sample size: t = 2

Example: Determine the No. of Plots

🕋 World Bank

nstitute

artnership for th

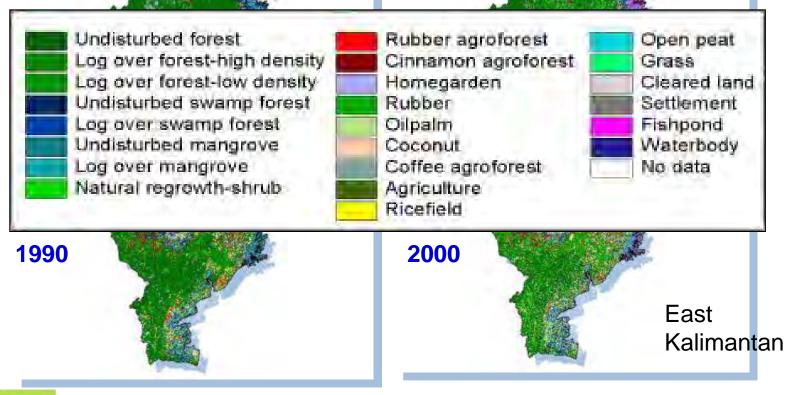
ropical Forest

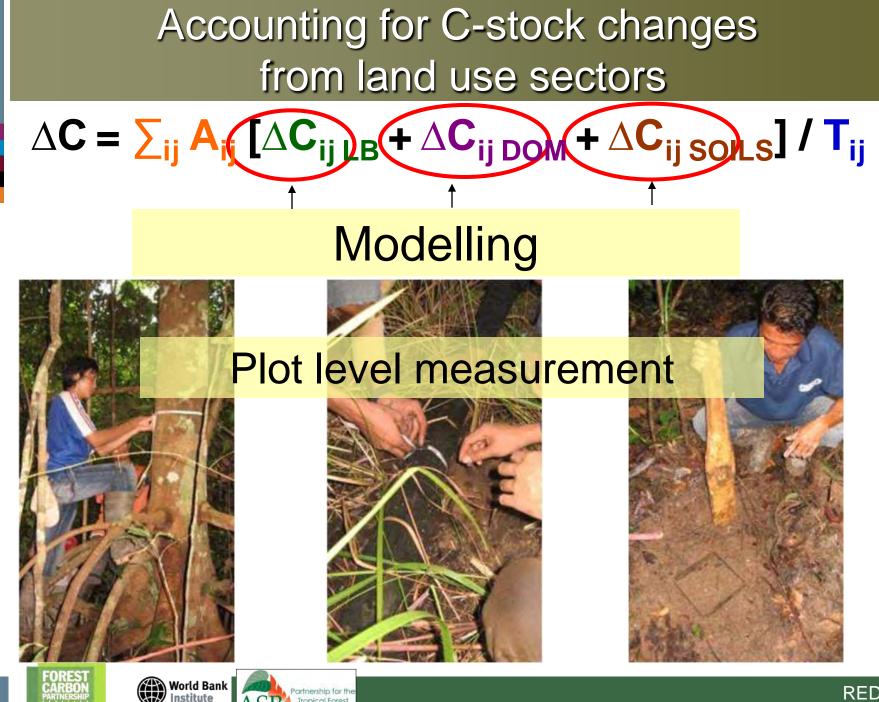
For a single-stratum project:

$$n = \frac{(N \times s)^2}{\frac{N^2 \times E^2}{t^2} + N \times s^2}$$

Single	stratum project	
Area		= 5,000 ha
Plot siz	ec	= 0.08 ha
Mean :	stock	= 101.6 t C/ha
Standa	rd deviation	= 27.1 t C/ha
N (numb	er of possible sample u	nits) = 5,000/0.08 = 62,500
Desire	d precision	= 10 %
E (allowa	able error)	$= 101.6 \ge 0.1 = 10.16$
0-	(62,500 × 27	.1) ²
<i>n=</i> -	$62,500^2 \times 10.$	$+ 62,500 \times 27.1^{-1}$
= 29 p	lots	Reference: Pearson, Walker, Brown 2005: Sourcebook for Land Use, Land- Use Change and Forestry Projects. BioCF, Winrock International

Accounting for C-stock changes from land use sectors


$\Delta C =$	$\sum_{ij} A_i$	j [∆C _{ij LB} -	► ∆ С_{іј DOM} + ∠	C_{ij SOILS}] / T_{ij}
	LUC	Biomass	Necromass	Soil
$\Delta \mathbf{C}$	Annual	change in <u>C</u>	stocks in the lan	dscape, ton C yr ⁻¹
∑ij Aij	<u>sum</u> of	areas of land	use type <i>i</i> that c	hange to <i>j</i> , ha
∆Cij LB	Change	e in <u>C stocks</u>	in <u>living biomass</u>	from changes of
	land us	e type <i>i</i> to <i>j</i> ,	tons C ha ⁻¹	
$\Delta Cij DOM$	Change	e in <u>C stocks</u>	in <u>dead organic r</u>	<u>natter</u> from
	change	s of land use	type <i>i</i> to <i>j</i> , ton C	; ha ⁻¹
∆Cij SOIL	S Chang	e in <u>C stocks</u>	in <u>soils</u> from cha	anges of land use
	type <i>i</i> to	o <i>j,</i> ton C ha⁻¹		
Tij	Period	of the transiti	on from land use	e type <i>i</i> to land use
	type <i>j</i> , y	/r		


Accounting for C-stock changes from land use sectors

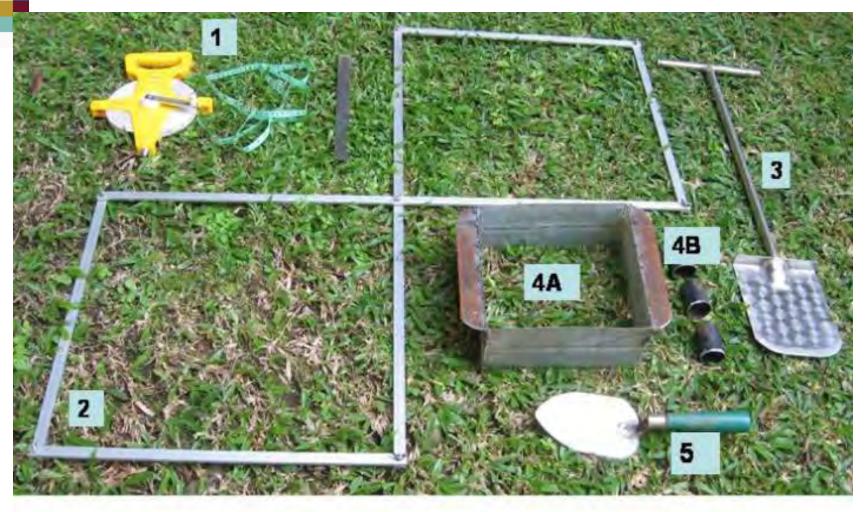


Tropical Fores

Measurement of C stock of

Necro mass

Soil

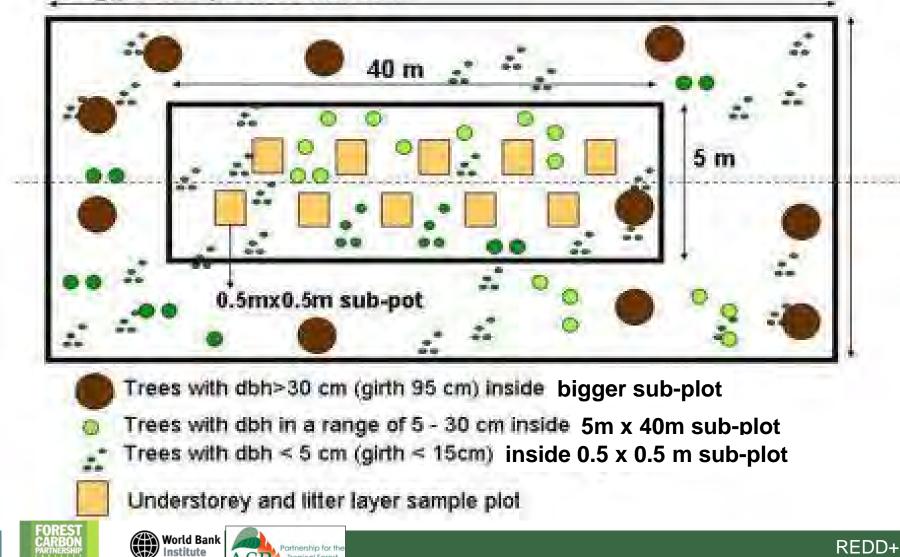


Bio-

mass

Equipments needed

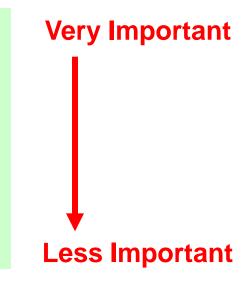
Partnership for the Tropical Forest Marains

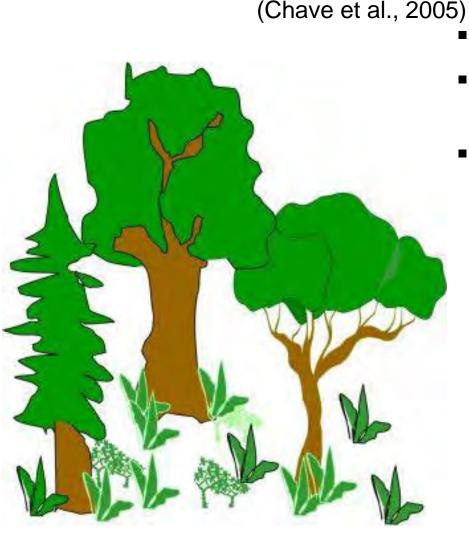

To assess the performance of existing land use systems as C sinks and/or preserving C stocks: Setting up plot sampling

Nested Plot Design for Sampling

Bigger sub-plot 100 mx 20 m

Important parameters for aboveground tree biomass


- 1. Tree trunk diameter
- 2. Wood specific gravity
- 3. Total height
- 4. Forest type (dry, moist or wet)



Chave et al. (2005)

Estimation of tree biomass

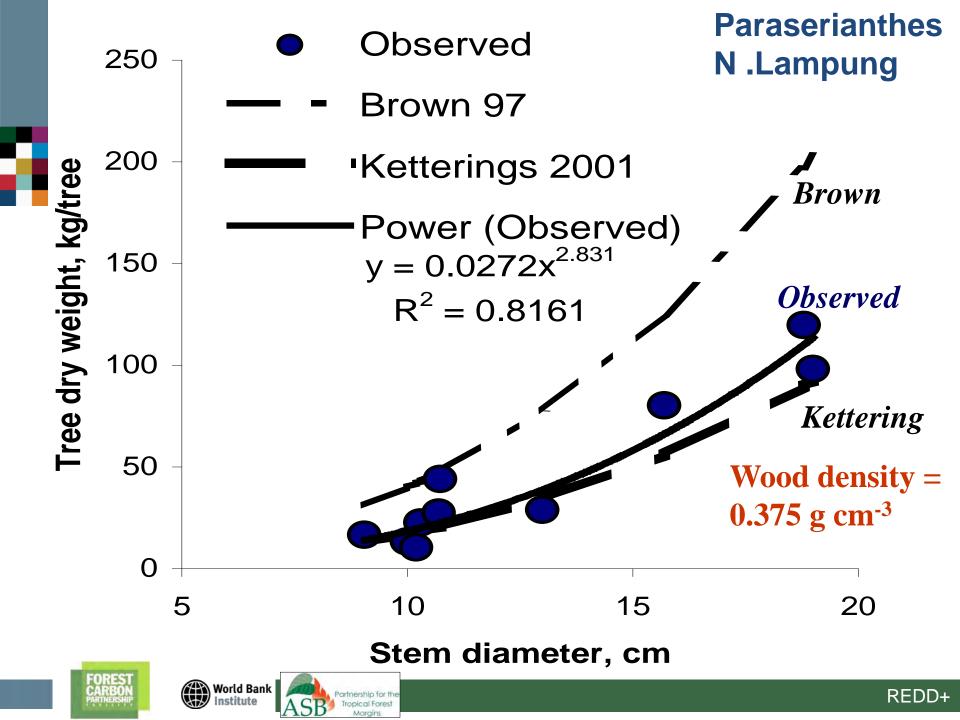
- Branching pattern
- Diameter at breast height (dbh at 1.3 m)
- Wood density

- Light (< 0.6 Mg m⁻³)
- Medium (0.6 0.75 Mg m⁻³),
- Heavy (0.75 0.9 Mg m⁻³)
- Very heavy (> 0.9 Mg m⁻³) (*Anonymous, 1981*)

http://www.icraf.cgiar.org

Relation of tree size to carbon stocks

Stem diameter DBH (cm)	Biomass DM per tree (Mg)	No. of tree per hectare	Carbon per ha (Mg/ha)	Carbon (%)
10	0.13	900	53	19
30	2.25	70	71	24
50	8.50	20	76	26
70	20	10	90	31
Total	-	1,000	290	100



Rainfall, mm/yr	Allometric	Diameter, cm	No tree	R ²
Dry (<1500)	W = 0.139 D^{2.32} (Brown, 1997)	5-40	28	0.89
Moist (1500- 4000)	W = 0.118 D^{2.53} (Brown, 1997)	5-148	170	0.90
	W = 0.049 D² H (Brown et al., 1995)			
	W = 0.11 ρ D ^{2+c} (c=0.62)			
	(Ketterings et al., 2001)			
Wet (>4000)	W = 0.037 D^{1.89} H (Brown, 1997)	4-112	160	0.90
W = Tree Biomass, kg/tree; D=dbh, cm; ρ = wood density, g cm ⁻³				

1

Estimation of tree biomass in agroforestry systems

$W = 0.11 \rho D^{2+0.62}$ (Ketterings et al., 2001)

W = Biomass; D = dbh; ρ = wood density Total Carbon = 46%

Are we going to use this allometric equation?

W = 0.118 D^{2.53} (Brown, 1997)

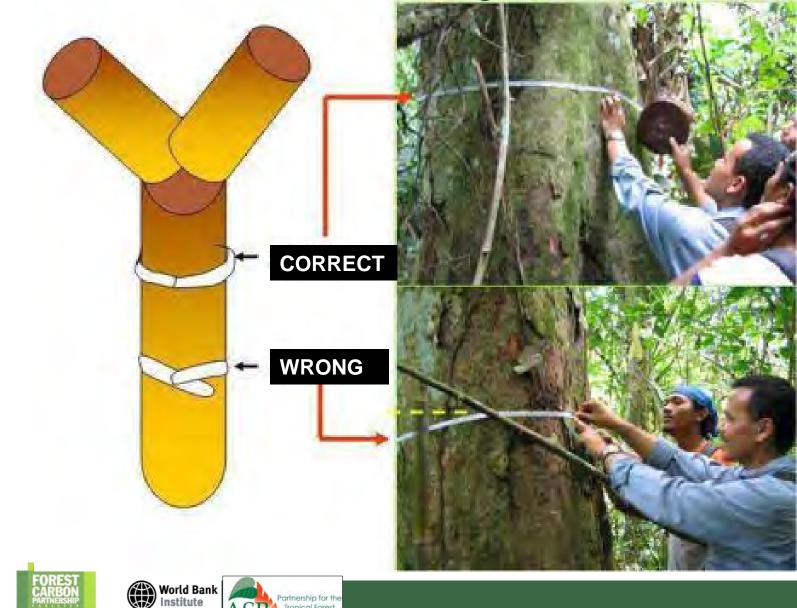
Mahogany

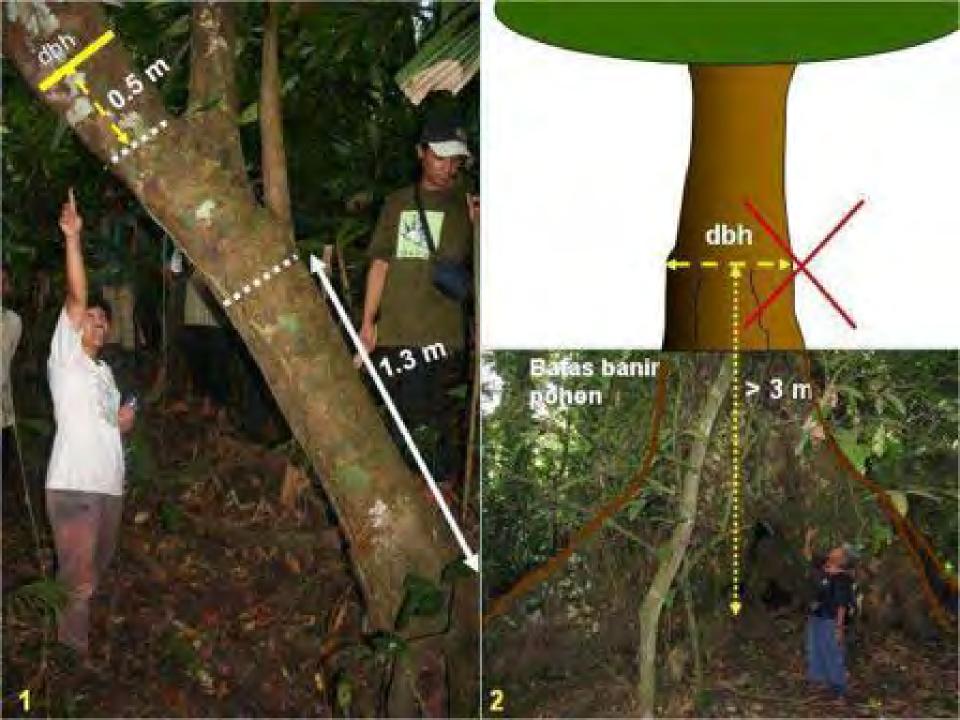
Bamboo

Parasenanthes

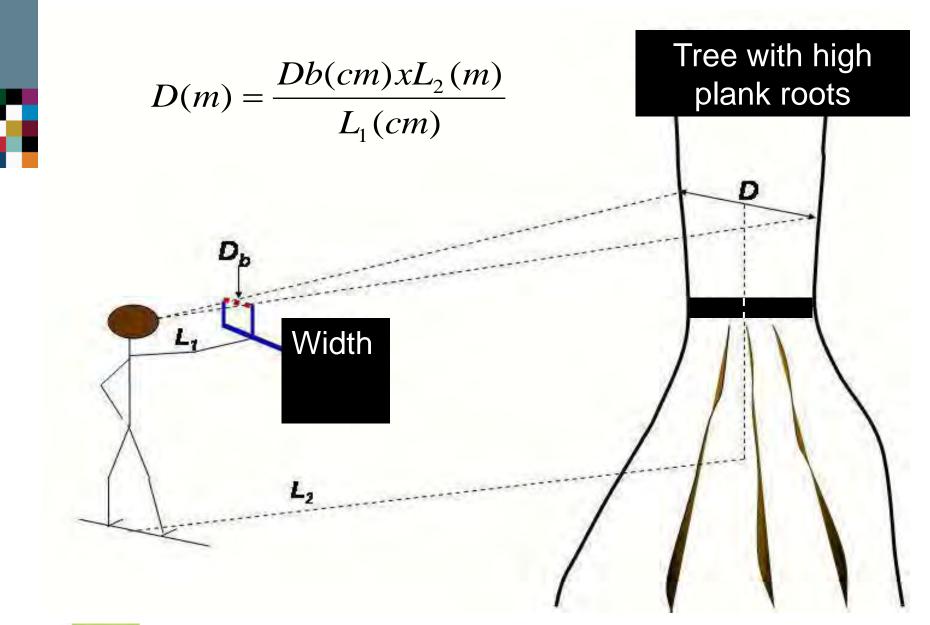
Banana

Biomass equations for 'woody' species

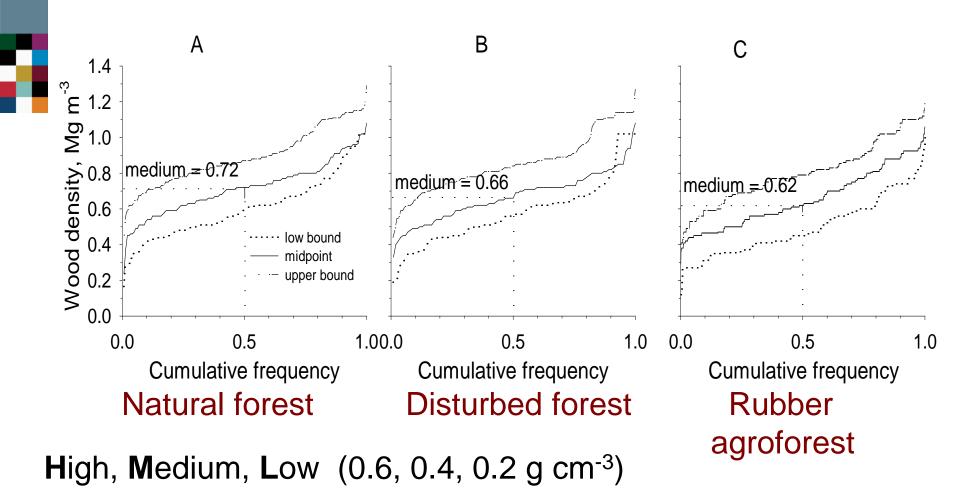

Vegetation	Equations	R ²
Coffee (Arifin, 2001)	$W = 0.2811 D^{2.0635}$	0.9455
Banana (Arifin, 2001)	W= 0.0303 D ^{2.1345}	0.9887
Bamboo (Priyadarsini,1998)	W= 0.1312 D ^{2.2784}	0.9541
Paraserianthes (Sugiarto, 2001)	W= 0.0272 D ^{2.831}	0.8161
Tea (<i>Camelia sinensis</i>) (Hariyadi, 2005)	$W = 0.1594 D^{1.1517}$	
Pinus (Waterloo, 1995)	W= 0.0417 D ^{2.6576}	0.9085


pical Forest

Measuring tree diameter at plot level for estimating C stock


Partnership for the Tropical Forest Margins

Measuring tree diameter as basis for allometric biomass estimate



Partnership for the Tropical Forest Margins

Wood Density

http://www.worldagroforestry.org/sea/Products/AFDbases/AF/index.asp

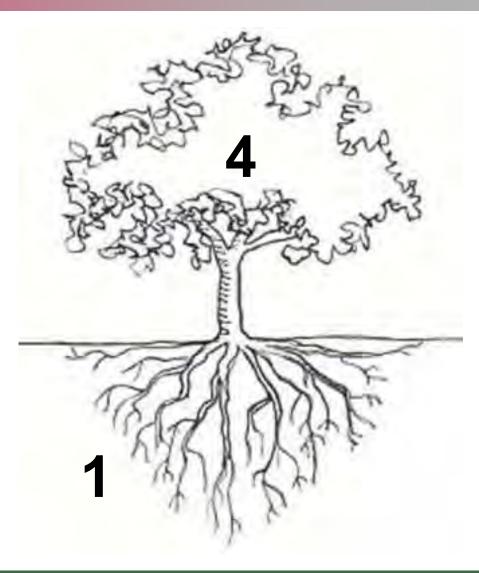
Table for total biomass of trees > 5 cm DBH

No	Local/Scien tific name	Branched? Y/N	G	D	Н	ρ*)	Biomass, kg/tree**)	Note
1								
2								
3								
4								
100								
	TOTAL TREE BIOMASS							
Note : G=girth, cm, D = dbh= G/ π , cm where π =3.14; H= tree height, cm, ρ = Wood density, g cm ⁻³ *)Estimated wood density: H igh, M edium, Low (0.6, 0.4, 0.2 g cm ⁻³)								

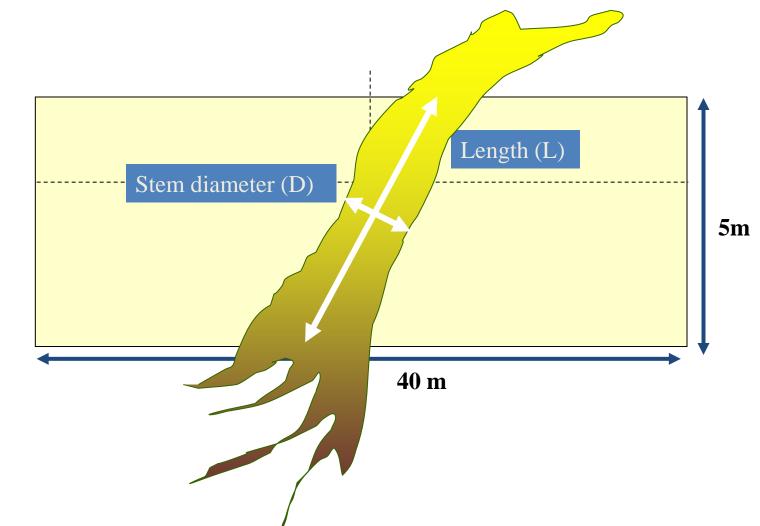
**) Estimate AGB using specific allometric equation for tree growing in the tropical forest, and for trees growing in the agroforestry and plantation system

Table for total biomass of understorey

C stock = DW (kg) x total C (0.46)


No.	Total FW (kg)	Sub- sample FW (g)	Sub- sample DW (g)	Total DW fine litter		Total C, %	Total C-stock, ton/ha
				kg/0.2 5 m²	kg/m ²		
1							
2							
3							
4							
5							
6							
	Total DW						
	Avg. DW						

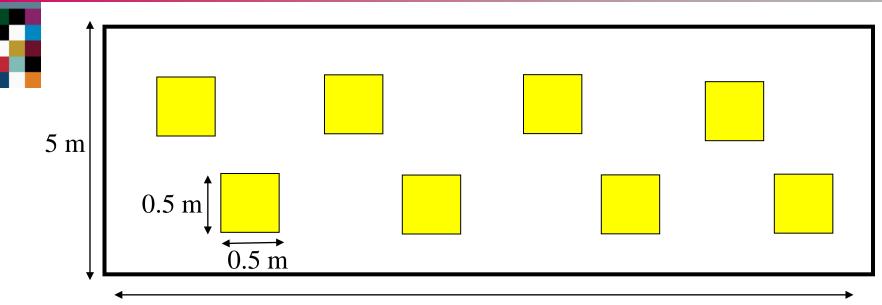
C stocks of Tree Root System


- Default values for the shoot/root ratio (SR-ratio) are 4:1 for <u>humid tropical</u> forest on normal upland soils
- up to 10:1 on continuously wet sites
- around 1:1 at very low soil fertility, long dry seasons

Estimation of Necromass: Laying trees

$DW = \pi/4 \times D^2 [cm^2] \times length [cm] \times wood density [g cm^{-3}]$

NECROMASS: Undisturbed sampling



Partnership for the Tropical Forest Marains

Destructive sampling: understorey and litter

40 m

Tropical Forest Marain

Sample handling: Separating roots and soil

artnership for the Tropical Forest Margins

Soil sampling → Soil bulk density Bulk Density = Weight / Vol. (g cm⁻³)

Metal frame: 20x20x10 cm

Estimation of total C stock in soil

Example

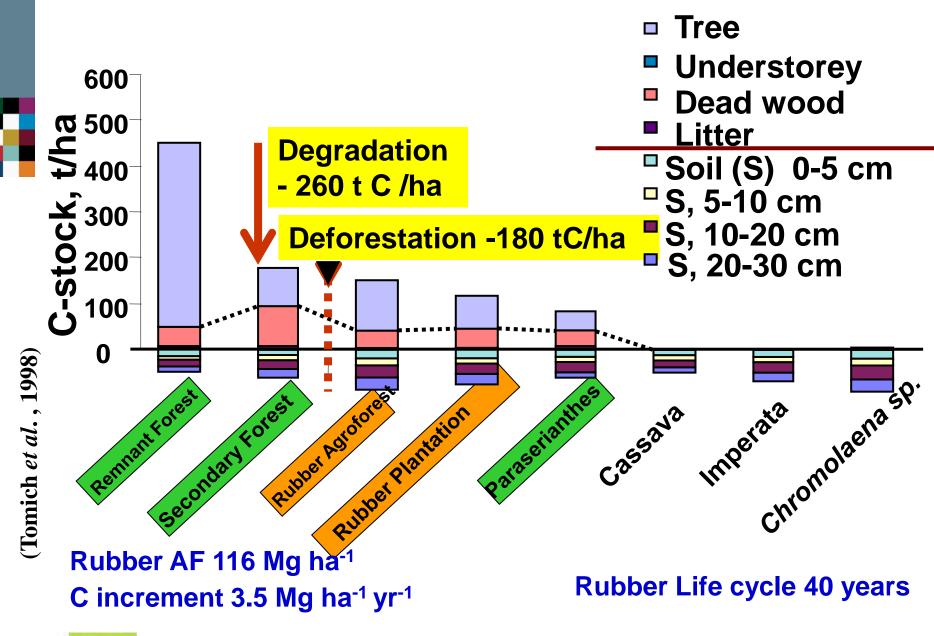
How much C stock (ton/ha) in soil layer of 10 cm, if soil bulk density 1.0 kg/dm³ or 1.0 ton/m³, and concentration of C_{org} in soil is 2.0% ?

Soil weight per ha = $100 \text{ m x} 100 \text{ m x} 0.10 \text{ m x} 1.0 \text{ ton/m}^3 = 1,000 \text{ ton}$

Soil C- stock = 1,000 ton x 0.02 = 20 ton/ha

Estimation of Total C stock per plot

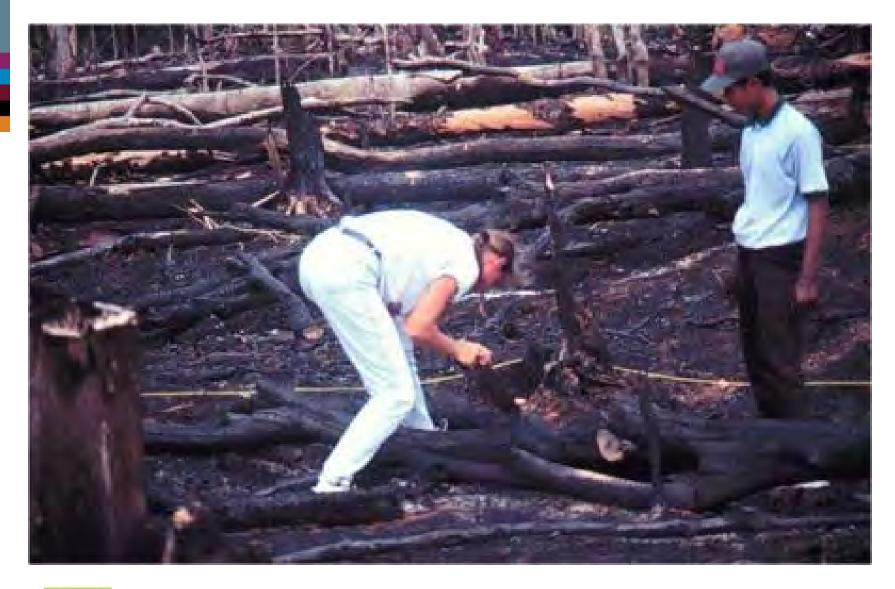
LUS	Rep	Trees ton/ha	Under- storey ton/ha	Litter ton/ha	Roots ton/ha	Soil 0-5 cm ton/ha	Soil 5-15 cm ton/ha	Total C-stock ton/ha
		1	2	3	4	5	6	1+2+3+4 +5+6
	1							
	2							
	3							
	4							
	5							
	6							
								Σ



Carbon stocks in peat land

It will not be discussed here

(Photo: Fahmudin Agus)


opical Forest

REDD+

Problems in C measurement

- High variation of Agroforestry in the landscape (crop-fallow rotation, complex or simple agroforestry)
- 2. Difficulty in quantifying charcoal in the soil originating from previous slash and burning activities

Charcoal after land burning..... How long it will stay?

opical Forest

From C sequestration perspective, which vegetation gives most benefit?

nership for th opical Forest

Time Average Carbon stocks of different LUS

Land use system (LUS)	C stock time- averaged (tC/ha)	CO ₂ stock time- averaged (tCO ₂ /ha)
Natural forest	250	918
Logged forest	200	734
Heavily logged forest	120	440
Agroforest 1	80	294
Agroforest 2	60	220
Сосоа	50	184
Oil palm plantations	41	150
Improved pastures	5	18
Low-productivity pastures	2	7
Agriculture 8yr fallow	15	55
Agriculture 3yr fallow	5	18

Sources: Palm, et al. 2004; White, et al. 2005.

Will this farmer get carbon benefits?

REDD+

Would high C stock in landscape mosaic be able to maintain high biodiversity as well?

